ganz-rationale Funktion

ganz-rationale Funktion
Funktion, deren Gleichung von der folgenden Form ist:y = a0 + a1 x + a2 x2 + ... + an xn,wobei n eine natürliche Zahl ist. Die (festen) Zahlen a0, a1, ..., an heißen Koeffizienten, der in der Funktionsgleichung rechts stehende Term Polynom (hier vom „n-ten Grad“).

Lexikon der Economics. 2013.

Игры ⚽ Поможем написать реферат

Schlagen Sie auch in anderen Wörterbüchern nach:

  • rationale Funktion — gebrochen rationale Funktion; ⇡  Funktion, deren Gleichung von der Form ist, wobei n und m natürliche Zahlen sind. Vgl. auch ⇡ ganz rationale Funktion …   Lexikon der Economics

  • Biquadratische Funktion — In der Mathematik ist ein Polynom (von griech. πολύ / polý und lat. nomen = „mehrnamig“) eine Summe von Vielfachen von Potenzen mit natürlichzahligen Exponenten einer Variablen, die in den meisten Fällen mit x bezeichnet wird. In der elementaren… …   Deutsch Wikipedia

  • Polynomische Funktion — In der Mathematik ist ein Polynom (von griech. πολύ / polý und lat. nomen = „mehrnamig“) eine Summe von Vielfachen von Potenzen mit natürlichzahligen Exponenten einer Variablen, die in den meisten Fällen mit x bezeichnet wird. In der elementaren… …   Deutsch Wikipedia

  • Weierstraßsche elliptische Funktion — Im mathematischen Teilgebiet der Funktionentheorie sind elliptische Funktionen doppeltperiodische meromorphe Funktionen. „Doppeltperiodisch“ bedeutet, dass es zwei komplexe Zahlen ω1,ω2 gibt, die keine reellen Vielfachen voneinander sind, so dass …   Deutsch Wikipedia

  • Weierstraßsche p-Funktion — Im mathematischen Teilgebiet der Funktionentheorie sind elliptische Funktionen doppeltperiodische meromorphe Funktionen. „Doppeltperiodisch“ bedeutet, dass es zwei komplexe Zahlen ω1,ω2 gibt, die keine reellen Vielfachen voneinander sind, so dass …   Deutsch Wikipedia

  • Elliptische Funktion — Im mathematischen Teilgebiet der Funktionentheorie sind elliptische Funktionen doppeltperiodische meromorphe Funktionen. „Doppeltperiodisch“ bedeutet, dass es zwei komplexe Zahlen ω1,ω2 gibt, die linear unabhängig im reellen Vektorraum sind, so… …   Deutsch Wikipedia

  • Hurwitzsche Zeta-Funktion — Die Hurwitzsche Zeta Funktion (nach Adolf Hurwitz) ist eine der vielen bekannten Zeta Funktionen, die in der analytischen Zahlentheorie, einem Teilgebiet der Mathematik, eine wichtige Rolle spielt. Die formale Definition für komplexe s,q lautet… …   Deutsch Wikipedia

  • Analytische Funktion — Als analytisch bezeichnet man in der Mathematik eine Funktion, die lokal durch eine konvergente Potenzreihe gegeben ist. Aufgrund der Unterschiede zwischen reeller und komplexer Analysis spricht man zur Verdeutlichung oft auch explizit von reell… …   Deutsch Wikipedia

  • Integrable Funktion — Das Lebesgue Integral (nach Henri Léon Lebesgue) ist der Integralbegriff der modernen Mathematik, der die Berechnung von Integralen in beliebigen Maßräumen ermöglicht. Im Fall der reellen Zahlen mit dem Lebesgue Maß stellt das Lebesgue Integral… …   Deutsch Wikipedia

  • Integrierbare Funktion — Das Lebesgue Integral (nach Henri Léon Lebesgue) ist der Integralbegriff der modernen Mathematik, der die Berechnung von Integralen in beliebigen Maßräumen ermöglicht. Im Fall der reellen Zahlen mit dem Lebesgue Maß stellt das Lebesgue Integral… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”